Climate of the ocean – Exercise 1

Task 1:

Calculate based on the values given in Figure 1

- a) The albedo α of the earth.
- b) The transmissivity of the atmosphere for the incoming shortwave radiation τ_{SW} .
- c) The transmissivity of the atmosphere for the outgoing longwave radiation τ_{LW} .

Figure 1: Global energy balance, Kiehl and Trenberth (2007)

Task 2:

Using the parameters calculated in task 1 calculate the surface temperature T_{surf} of the simple radiation balance model depicted in figure 2. (\overline{S} – solar radiation, $F_{surf} = \sigma T_{surf}^4$, σ =5.67x10⁻⁸W m⁻² K⁻⁴).

Figure 2: Simple radiation balance model with greenhouse effect

Task 3:

The albedo of the earth α_{p} is defined as:

$$\alpha_{p} = \alpha_{L} \forall T_{surf} < T_{L}$$

$$\alpha_{p} = \alpha_{L} + \frac{\Delta \alpha}{\Delta T} (T_{surf} - T_{L}) \forall T_{L} < T_{surf} < T_{U}$$

$$\alpha_{p} = \alpha_{U} \forall T_{U} < T_{surf}$$

with α_L =0.62, α_U =0.3, T_L =-10°C, T_U =0°C (see also Fig. 3).

In equilibrium:

$$F_{solar} = F_{thermal}$$

$$\frac{1}{4} \left(1 - \alpha_p \left(T_{surf} \right) \right) S_0 = \sigma T_{surf}^4 \quad (S_0 = 1368 \frac{W}{m^2})$$

For the right-hand side one can apply the Budyko linearization:

$$\frac{1}{4} (1 - \alpha_p(T_{surf})) S_0 = A + B * (T_{surf} - 273.15))$$

with A=203.3 W/m² and B=2.09 W/m²/K.

- a) Calculate the equilibrium temperatures.
- b) Are these equilibriums stable?

Figure 3: Radiation forcings of the Budyko model with ice albedo feedback.

Task 4:

The ice albedo feedback as displayed above is one example for a climate feedback. Explain in your own words the meanings of climate feedbacks and climate sensitivity and how the two are related.